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Abstract
We introduce a new quantum heat engine, in which the working medium
undergoes quantum quasi-adiabatic and non-unitary processes to extract work
in the cycle. Two kinds of working medium are considered. The first one
consists of a three-level quantum system, whereas the second is a quantum
system with a discrete level and a continuum. Net work done by this
engine is calculated and discussed. The results show that this quantum
heat engine behaves like the two-level quantum heat engine in both the
high-temperature and low-temperature limits, but it operates differently at
intermediate temperatures. The efficiency of this quantum heat engine is also
presented and discussed.

PACS numbers: 05.70.−a, 07.20.Mc

1. Introduction

A classical heat engine converts heat energy into mechanical work by using a classical-
mechanical system in which a working medium (for example, a gas) expands and pushes a
piston in a cylinder. Working between a high-temperature reservoir and a low-temperature
reservoir, the classical heat engine achieves maximum efficiency when it is reversible, while
the efficiency is zero if the two reservoirs have the same temperature. The situation changes
for its quantum counterpart, where the working medium and the dynamics that govern the
cycle are quantum. It was shown that the quantum heat engine can better the work extraction
and improve the engine efficiency [1–5].

The quantum heat engine concept was introduced by Scovil and Schulz-Dubois [6] and
extended in many later works [1–5, 7–12]. Quantum heat engines are characterized by three
attributes: the working medium, the cycle of operation and the dynamics that govern the
cycle. In the previous works, the working medium is considered as an ensemble of many non-
interacting discrete level systems. Specifically, the analysis is carried out on two-level systems
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[2, 13], three-level systems [4], as well as an ensemble of harmonic oscillators [2, 14, 15].
In these analyses, the occupation probabilities of the energy levels are assumed unchanged
in adiabatic processes, i.e. the evolution of the working medium is unitary and adiabatic.
These give rise to the following questions: how does the work extraction change when the
quantum adiabatic conditions break down? With continuum working medium what is the
work extraction of quantum heat engine? Can such a quantum heat engine improve the work
extraction?

In this paper, we will answer these questions by examining a quantum heat engine
working between two reservoirs with different temperatures. Two kinds of working medium
are considered. The first one is modelled as a three-level quantum system and the second
is described by a quantum system with a discrete level and a continuum. In contrast with
the previous studies, we consider in this paper a quantum quasi-adiabatic process instead of
the quantum adiabatic process in the literatures, and the evolution is not necessary unitary,
resulting from couplings of the working medium to its environment. The quantum quasi-
adiabatic process here means that the working medium undergoes a quantum evolution with
only the population of the ground state unchanged. This is of relevance to the fast change of
controlled parameters upon which the energy levels of the working medium depend. So, the
presented study put forward the research in this field by reconsidering two attributes among
the three: the working medium and the cycle of operation. The work extraction and the
efficiency of this new quantum heat engine are presented and discussed. The results show
that the quantum quasi-adiabatic and non-unitary process affects the work extraction and can
increase the efficiency of the quantum heat engine.

This paper is organized as follows. In section 2, we calculate the work extraction and
the efficiency of the quantum heat engine with a three-level quantum system as its working
medium. The positive work condition is given and its relation to other quantum heat engine is
discussed. We extend the discussion for the three-level quantum heat engine to the quantum
heat engine in which the working medium is a quantum system with a discrete level and a
continuum in section 3. Finally, we conclude our results in section 4.

2. Three-level quantum heat engine working beyond the quantum adiabatic
approximation

In this section, we shall present a calculation for the work extraction and the efficiency of
the three-level quantum heat engine. The three levels of the working medium at stage S are
labelled by ES

0 , ES
1 and ES

2

(
ES

2 > ES
1 > ES

0

)
, respectively. The heat-engine cycle includes

the following four stages. In stage 1, the three-level system contacts with a heat bath at
temperature T h. After some time, the system has probability qh

0 in its ground state Eh
0 ,

satisfying

1 − qh
0 = 1

zhh

(
e−βhE

h
1 + e−βhE

h
2
)
, (1)

where zhh denotes the partition function of the system at this stage. In stage 2, quasi-adiabatic
changes of the energy levels from

{
Eh

0 , Eh
1 , Eh

2

}
to

{
El

0, E
l
1, E

l
2

}
take place. The quasi-

adiabatic changes mean that only the population of the ground state keeps constant, i.e. after
the change one has

1 − qh
0 = 1

zhl

(
e−βhE

l
1 + e−βhE

l
2
)
. (2)

This evolution is not unitary that may be described by the master equation,

i
∂

∂t
ρ = [H, ρ] + L(ρ), (3)



Quantum heat engine beyond the adiabatic approximation 8657

where ρ describes the density matrix of the working medium initially in

ρ(0) = qh
0 |E0〉〈E0| +

e−βhE
h
1

Zhh

|E1〉〈E1| +
e−βhE

h
2

Zhh

|E2〉〈E2|. (4)

L(ρ) comes from the working-medium–environment coupling. The external sources of work
[16, 17] may play the role of the environment. This is different from [16, 17], where the time
evolution of the working medium in this stage is unitary. To be specific, L(ρ) may take

L(ρ) = i�1(2|E1〉〈E2|ρ|E2〉〈E1| − ρ|E2〉〈E2| − |E2〉〈E2|ρ)

+ i�2(2|E2〉〈E1|ρ|E1〉〈E2| − ρ|E1〉〈E1| − |E1〉〈E1|ρ). (5)

�1 and �2 depend on the temperature of the external source of work (environment) though the
working medium was isolated from the heat bath. We assume that H = H( �R) changes slowly
such that the population in state |E0〉 remains unchanged, while a population transfer among
|E1〉 and |E2〉 occurs in this stage and finally the population on these states after stage 2 are
1
zhl

e−βhE
l
1 , and 1

zhl
e−βhE

l
2 , respectively. zhl is the partition function. This implies that the level

E1 acquires a population gain
(
eβhE

l
1
/
zhl −eβhE

h
1
/
zhh

)
in this quasi-adiabatic process; this can

be done in principle by manipulating the change rate of the parameters on which the energy
level depends. The diagonal matrix element ρii = 〈Ei |ρ|Ei〉 represents the probability of the
working medium in the state |Ei〉. It is easy to check that ρ22/ρ11 = �2/�1 in the stationary
state, i.e. 〈Ei |ρ̇|Ei〉 = 0. Usually, �2 and �1 respectively take γ n̄ and γ (n̄ + 1), leading to
ρ22/ρ11 = exp[−βh(E2 − E1)] when n̄ = 1/(eβh(E2−E1) − 1). Here Ei depends on �R and
Ei( �R0) = Eh

i , Ei( �Rτ ) = El
i , where τ is the time when stage 2 finishes. Please note that the

term L(ρ) does not directly depend on the population of the state |E0〉. So, the population qh
0

in the state |E0〉 remains unchanged provided H( �R) changes slowly such that the transition
probability induced by the change of H( �R) is negligible. Loosely speaking, the transition
probability from the state |E0〉 to the state |Ei〉 induced by the change of H( �R) is proportional

to
∣∣ 〈E0|∂H( �R)/∂t |Ei 〉

(E0−Ei)2

∣∣, so if
∣∣ 〈E0|∂H( �R)/∂t |Ei 〉

(E0−Ei)2

∣∣ � 1 for either i = 1 and i = 2, the population qh
0

would remain unchanged in the stage. For recent progress in adiabatic evolution, we refer
the reader to [18]. In stage 3, the system is brought into contact with another heat bath at
temperature T l , and after some time the population on the ground state El

0 is ql
0,

1 − ql
0 = 1

zll

(
e−βlE

l
1 + e−βlE

l
2
)
. (6)

In stage 4, similar to stage 2, the working medium undergoes another non-unitary and non-
adiabatic evolution. Finally, the system couples to the heat bath and relax to the canonical
state at temperature Th; this is also the first stage of the next cycle. By the same procedure
[2, 4, 9], the net work done in the cycle is calculated according to d̄W = ∑

ipi dEi ,

�W = (
ql

0 − qh
0

)(
�h

3 − �l
3

)
+

(
δh

3 − δl
3

) ⎛
⎝ 1 − qh

0

1 + e
δh3

KTh

− 1 − ql
0

1 + e
δl3

KTl

⎞
⎠ , (7)

where Ex
1 − Ex

0 = �x
3, E

x
2 − Ex

1 = δx
3 (x = l, h). Clearly, if δh

3 = δl
3, the work extraction

reduces to

�W = (
ql

0 − qh
0

)(
�h

3 − �l
3

)
. (8)

This is exactly the work extraction of the two-level quantum heat engine. Furthermore, in the
small δx

3 limit, i.e.

δh
3

KTh

� 1,
δl

3

KTl

� 1, (9)
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the work extraction reads

�W = (
ql

0 − qh
0

) ((
�h

3 +
δh

3

2

)
−

(
�l +

δl
3

2

))
. (10)

This is different from the three-level quantum heat engine with adiabatic processes [4]. The
difference can be explained as the non-zero heat exchange in the quantum quasi-adiabatic
process. Now, we turn to study the efficiency of this quantum heat engine. It is defined as the
ratio of the work done to the heat absorbed in the cycle,

η = �W

�Q
. (11)

By the first law of thermodynamics, we have

η = 1 − �Q2 + �Q3

�Q1 + �Q4
, (12)

where �Qi(i = 1, 2, 3, 4) denote the heat exchange between the working medium and
reservoirs on the branch i. By the definition d̄Q = ∑

i Eidpi , simple calculation shows that

η = 1 −

(
qh

0 − ql
0

)
�l

3 + δl
3

(
1−qh

0

1+e
δh3

KTh

− 1−ql
0

1+e
δl3

KTl

)

(
qh

0 − ql
0

)
�h

3 + δh
3

(
1−qh

0

1+e
δh3

KTh

− 1−ql
0

1+e
δl3

KTl

) . (13)

In the small δx
3 limit, i.e.

δh
3

KTh

� 1,
δl

3

KTl

� 1, (14)

the efficiency becomes

η = 1 − �l
3 + δl

3
2

�h
3 + δh

3
2

. (15)

When qh
0 = ql

0, we have

η = 1 − δl
3

δh
3

. (16)

This is same as in the conventional three-level quantum heat engine in the limit qh
0 = ql

0.
Equation (12) shows that η = 1−�l/�h with δl

3 = δh
3 = 0; this is exactly the efficiency of the

two-level quantum engine. For δh
3 = 0 and δl

3 �= 0, η = 1 − (
�l

3 + δl
3/2

)/
�h

3 > �l/�h in the
small δx

3 limit, suggesting that we may increase the efficiency of the engine by manipulating
δh

3 and δl
3. This quasi-adiabatic heat engine works with at least a three-level working medium,

because it requires that the population in one of the levels remains unchanged, while population
among the other levels allowed. The quantum heat engine with a continuum working medium
has a similar property, as one can see in the following section.

3. Quantum heat engine with the continuum working medium

In this section, the working medium is envisioned as a quantum system with a discrete level
|d〉 and a continuum |c〉 as shown in figure 1. The heat-engine cycle consists of four stages
labelled by 1, 2, 3 and 4; this is schematically illustrated in figure 2. This four-stroke quantum



Quantum heat engine beyond the adiabatic approximation 8659

Figure 1. An illustration of the level structure of the working medium. The occupation probability
px

0 , x = l, h of the discrete level |d〉 (with eigenenergy Ex
0 ) was kept fixed in adiabatic processes.

The continuum broadening was denoted by Ex
max − Ex

min.

Figure 2. Schematic illustration of the four-stroke quantum heat engine. From states A to B, the
working medium absorbs heat from the high-temperature reservoir, leading to population transfer
from the discrete level |d〉 to the continuum. From states B to C, works are done with the working
medium undergoing a quasi-adiabatic process. Stages 3 and 4 (corresponding changes from C to
D and from D to A, respectively.) are reversed processes of 1 and 2, respectively. We will use
(Ex

0 , Ex
min, E

x
max) to characterize the level structure of the working medium in the text.

heat engine is a quantum analogue of the classical Otto engine, which includes two quantum
adiabatic processes and two isothermal processes.

Denoting px
0 , x = h, l, the occupation probability of the discrete level and p(E) the

occupation probability of the continuum, we can write the expectation value of the measured
energy of a quantum system U as

U = 〈E〉 =
∑

i

piEi +
∫

d[p(E) · E]. (17)

The definition of infinitesimal work done in a process is then

d̄W =
∑

i

pi dEi +
Emax∑
Emin

p(E) dE, (18)

which is a straightforward extension of that for discrete level systems [13] to the system under
our consideration. The first term comes from the contribution of discrete levels, while the last
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term comes from the continuum. By the first law of thermodynamics dU = d̄Q + d̄W , the
infinitesimal heat absorbed is

d̄Q =
∑

i

Ei dpi +
Emax∑
Emin

E dp(E). (19)

With these notations, we now calculate the work done on the four stages of the heat engine.
In stage 1, namely, from A to B, the working medium is coupled to a hot reservoir of

temperature Th and its energy structure is kept fixed. In this process, the population of the
discrete level is changing from the initial population pl

0 to the population ph
0 . Accordingly, the

total population of the continuum is changing from 1 − pl
0 to 1 − ph

0 . The work done in this
stage is clearly zero by the definition equation (18). In stage 2, B → C, the working medium
is decoupled from the heat reservoir, and the energy structure is varied from

(
Eh

0 , Eh
min, E

h
max

)
to

(
El

0, E
l
min, E

l
max

)
. In this process, the occupation probability ph

0 is kept fixed. This is
a quasi-adiabatic process in the sense that the total occupation probability of the working
medium on the continuum remains unchanged, but population transfer among states in the
continuum is allowed. Physically, this can be realized in the same way as we discussed in
the last section. After the working medium reaches thermodynamical equilibrium, the total
occupation probabilities of the working medium on the continuum satisfy

1 − ph
0 =

∫ Eh
max

Eh
min

ρh

Zhh

e−βhE
h

dEh,

1 − ph
0 =

∫ El
max

El
min

ρl

Zhl

e−βhE
l

dEl

=
∫ Eh

max

Eh
min

ρh

Zhl

e−βh(
ρh
ρl

(Eh−Eh
min)+El

min) dEh,

1 − pl
0 =

∫ El
max

El
min

ρl

Zll

e−βlE
l

dEl

=
∫ Eh

max

Eh
min

ρh

Zll

e−βl(
ρh
ρl

(Eh−Eh
min)+El

min) dEh,

1 − pl
0 =

∫ Eh
max

Eh
min

ρh

Zlh

e−βlE
h

dEh.

(20)

Here ρh (ρl) denotes the degeneracy of the continuum with the level structure(
Eh

0 , Eh
min, E

h
max

)(
El

0, E
l
min, E

l
max

)
, and it is assumed to be constant. Ex, x = h, l stand

for an eigenenergy in the continuum with the level structure
(
Ex

0 , Ex
min, E

x
max

)
. Zhh, Zhl, Zll

and Zlh are the partition functions of the working medium at equilibrium states B, C, D and
A, respectively. βh = 1

KTh
, βl = 1

KTl
, and K is the Boltzmann constant. We have assumed

in equation (20) that the occupation probability on the continuum satisfies the second line
of equation (20) after stage 2. This is reachable in a non-unitary evolution by changing the
parameters upon which the energy structure of the working medium depends. Throughout this
paper, we focus our attention on the following situation:

ρh

(
Eh

max − Eh
min

) = ρl

(
El

max − El
min

)
, ρh

(
Eh − Eh

min

) = ρl

(
El − El

min

)
. (21)

These relations mean that the quasi-adiabatic process does not change the distribution of
microstates. In other words, the degeneracy of the continuum is supposed to be changed
homogeneously in adiabatic processes, and then any state with energy Eh at temperature T h
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has a one-valued correspondence El at temperature T l . In fact, this relation was used in third
and fifth lines in equation (20).

Define

Eh
min − Eh

0 = �h, Eh
max − Eh

min = δh

El
min − El

0 = �l, El
max − El

min = δl.

The energy change in stage 2 reads

�U2 = ph
0

(
Eh

0 − El
0

)
+

∫ Eh
max

Eh
min

ρh

Zhh

e−βhE
h

Eh dEh −
∫ El

max

El
min

ρl

Zhl

e−βhE
l

El dEl

= ph
0

(
Eh

0 − El
0

)
+ ρh

∫ Eh
max

Eh
min

1

Zhh

e−βhE
h

(
Eh −

(
ρh

ρl

(
Eh − Eh

min

)
+ El

min

))
dEh

+ ρh

∫ Eh
max

Eh
min

(
1

Zhh

e−βhE
h − 1

Zhl

e−βh(
ρh
ρl

(Eh − Eh
min) + El

min)

)(
ρh

ρl

(
Eh − Eh

min

)
+ El

min

)
dEh.

(22)

According to equation (18), the work done in this stage reads

�W2 = ph
0

(
Eh

0 − El
0

)
+

∫ Eh
max

Eh
min

ρh

Zhh

e−βhE
h

(
Eh −

(
ρh

ρl

(
Eh − Eh

min

)
+ El

min

))
dEh

= ph
0

(
Eh

0 − El
0

)
+

(
1 − ph

0

)ρhE
h
min − ρlE

l
min

ρl

+
(
1 − ph

0

) (
ρl − ρh

ρl

(
Eh

max +
δh

e−βhδh − 1

)
+

ρl − ρh

βhρl

)
, (23)

which is exactly the second line in equation (22). Stage 3 is similar to the first. The working
medium is now coupled to a cold reservoir at temperature Tl , and its energy structure is kept
fixed. The occupation probability backs in this stage from ph

0 to pl
0. Stage 4 closes the cycle

and is similar to stage 2. The working medium is decoupled from the cold reservoir, and
the level structure is changed back to its original value

(
Eh

0 , Eh
min, E

h
max

)
. A similar analysis

shows that the work done in stage 3 is zero, whereas the energy change and the work done in
stage 4 are

−�U4 = ph
0

(
Eh

0 − El
0

)
+

∫ Eh
max

Eh
min

ρh

Zlh

e−βlE
h

Eh dEh −
∫ El

max

El
min

ρl

Zll

e−βlE
l

El dEl

= pl
0

(
Eh

0 − El
0

)
+ ρh

∫ Eh
max

Eh
min

(
1

Zlh

e−βlE
h − 1

Zll

e−βl(
ρh
ρl

(Eh−Eh
min)+El

min)

)
Eh dEh

+ ρh

∫ Eh
max

Eh
min

1

Zll

e−βl(
ρh
ρl

(Eh−Eh
min)+El

min)

(
Eh −

(
ρh

ρl

(
Eh − Eh

min

)
+ El

min

))
dEh,

(24)

−�W4 = pl
0

(
Eh

0 − El
0

)
+ ρh

∫ Eh
max

Eh
min

1

Zll

e−βl(
ρh
ρl

(Eh−Eh
min)+El

min)

×
(

Eh −
(

ρh

ρl

(
Eh − Eh

min

)
+ El

min

))
dEh
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= pl
0

(
Eh

0 − El
0

)
+

(
1 − pl

0

)ρhE
h
min − ρlE

l
min

ρl

+
(
1 − pl

0

) (
ρl − ρh

ρl

(
Eh

max +
δh

e−βl
ρh
ρl

δh − 1

)
+

ρl − ρh

βlρh

)
. (25)

The net work done in the whole cycle is then

�W = �W2 + �W4 = (
ph

0 − pl
0

)(
Eh

0 − El
0

)
+

(
pl

0 − ph
0

)ρhE
h
min − ρlE

l
min

ρl

+
(
pl

0 − ph
0

)ρl − ρh

ρl

Eh
max +

ρl − ρh

ρl

δh

(
1 − ph

0

e−βhδh − 1
− 1 − pl

0

e−βl
ρh
ρl

δh − 1

)

+ (ρl − ρh)

(
1 − ph

0

βhρl

− 1 − pl
0

βlρh

)
. (26)

Noting

ρl

ρh

= δh

δl
, (27)

one can reduce the net work �W to

�W = (
pl

0 − ph
0

)
((�h + δh) − (�l + δl)) + (δh − δl) · f

(
px

0 , Tx, δ
x
)∣∣

x=l,h
. (28)

Here

f
(
px

0 , Tx, δ
x
)∣∣

x=l,h
= 1 − ph

0

e− δh

KTh − 1
− 1 − pl

0

e− δl

KTl − 1
+

1 − ph
0

δh

KTh

− 1 − pl
0

δl

KTl

. (29)

This is the central result of this paper, showing that the net work done by the heat engine
depends on the occupation probabilities ph

0 and pl
0, the continuum broadenings δh and δl , the

energy gaps �h and �l as well as the low and high temperatures of the reservoir. To get
more insight into this result, we consider the following limiting situations. (a) The continuum
broadening remains unchanged in the cycle, namely, δh = δl . The net work in this case reads

�Wδ = (
pl

0 − ph
0

)
(�h − �l). (30)

This backs to the net work done by the quantum heat engine with two-level systems as its
working medium. (b) High-temperature limit, δh

KTh
� 1, δl

KTl
� 1. The net work done in this

situation follows

�WT = (
pl

0 − ph
0

)
((�h + δh) − (�l + δl)). (31)

Interestingly, the net work in this case takes the same form as in equation (30), but the energy
difference of the two-level working medium is (�h + δh) at high temperature and (�l + δl) at
low temperature. The same results are found in the low-temperature limit. (c) No population
transfer between the discrete level and the continuum in the cycle, i.e. ph

0 = pl
0 = p. The net

work �W in this case follows from equation (28):

�Wp = (δh − δl)(1 − p)f
(
px

0 = 0, Tx, δ
x
)∣∣

x=l,h
. (32)

As shown, �Wp totally comes from the contribution of the continuum. It is zero if δh = δl ,
and it increases linearly as p decreases. �Wp > 0 requires that Th > δh

δl Tl and δh > δl .
This is similar to the requirement upon the two-level quantum heat engine [1, 19] for positive
work extraction. In order to compare our heat engine with the two-level one, we plot a work
difference (�W −�Wδ) versus δh and δl in figure 3. Note that this work difference is different



Quantum heat engine beyond the adiabatic approximation 8663

0

20

40

0
10

20
30

0

5

δhδl

∆
∆ 

W
δ

Figure 3. The work difference (�W −�Wδ) as a function of δh and δl . The parameters chosen are
pl

0 = 0.5, ph
0 = 0.3 and KTh = 5. The work difference, δx, (x = l, h), and KTh were rescaled in

units of KTl = 1 in this plot.

(This figure is in colour only in the electronic version)

from �Wp, where pl
0 = ph

0 = p is considered. As we mentioned above, the contribution
from the continuum was excluded in �Wδ . So (�W − �Wδ) mostly characterize the effect
of the continuum on the work extraction in the quantum heat engine. From the other aspect,
this work difference can be understood as the net work with the energy gap unchanged in the
cycle, i.e. �l = �h. Figure 3 shows that the work difference decreases as δl increases for
small δh, but the result goes in the opposite direction for large δh. We also find from figure 3
that (�W − �Wδ) > 0 in the region δl � δh and around.

Using the definition of the heat engine efficiency,

η = 1 − �Q2 + �Q3

�Q1 + �Q4
, (33)

and
�Q1 + �Q4 = (

pl
0 − ph

0

)
(�h + δh) + δh · f

(
px

0 , Tx, δ
x
)∣∣

x=l,h
,

�Q2 + �Q3 = (
pl

0 − ph
0

)
(�l + δl) + δl · f

(
px

0 , Tx, δ
x
)∣∣

x=l,h
,

(34)

we have

η = 1 −
(
pl

0 − ph
0

)
(�l + δl) + δl · f

(
px

0 , Tx, δ
x
)∣∣

x=l,h(
pl

0 − ph
0

)
(�h + δh) + δh · f

(
px

0 , Tx, δx
)∣∣

x=l,h

. (35)

In the high-temperature limit δh

KTh
� 1, δl

KTl
� 1, η reduces to

η = 1 − �l + δl

�h + δh
, (36)

returning back to the efficiency of the two-level quantum heat engine. This observation holds
in the low temperature, as the net work does. Similarly, for pl

0 = ph
0 , the efficiency becomes

η = 1 − δl/δh. Note that in the limit δl = δh, the net work �W returns back to the result of
the two-level quantum heat engine, but the efficiency does not. This is due to the difference
in the heat exchange of the two engines.

4. Conclusion and remark

In conclusion, a new kind of quantum heat engine has been introduced in this paper. As its
working medium, the three-level quantum system and the quantum system that has a discrete
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level and a continuum are considered. The working medium is allowed to undergo quantum
quasi-adiabatic and non-unitary evolutions in the cycle. This makes the engine different from
the conventional quantum heat engines. This new quantum heat engine can extract work like a
two-level quantum heat engine in the high-temperature and low-temperature limits, whereas it
works in a different way at intermediate temperatures. Since the previous studies on quantum
heat engine were focused on various working media only with discrete energy levels, the study
presented here can better the understanding of quantum heat engine, in particular shed light
on the effect of non-adiabatic and non-unitary evolution on the performance of quantum heat
engine. The limitation of our discussion is the assumption on the occupation probability in the
excited states (or the continuum) after stage 2. However, it is reachable by manipulating the
population transfer in the quasi-adiabatic process via controlling the parameters, upon which
the energy structure of the working medium depends. The presented representation can be
readily extended to other non-adiabatic processes.
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